Improving UPS Efficiency Using “Eco-Mode”

Steve Greenberg, Lawrence Berkeley National Lab
21 January 2020
Typical Uninterruptible Power Supply (UPS)
UPS Efficiency Drops as the Load Drops

Factory Measurements of UPS Efficiency
(tested using linear loads)
What is “Eco-Mode”?

• Use of UPS bypass except when inverter is actually needed

• Various names:
 – EConversion™ “advanced Eco Mode”
 – ESS (Energy Saving System)
 – SEM (Super EcoMode)
 – VFD (Voltage and Frequency Dependent)
 – Maximum Energy Saving Mode

• Switches from bypass to inverter mode in far less than a cycle
Example of UPS in Eco Mode response to power failure
How much does Eco-Mode save?

- Official number, estimated
 - 2-3% (based on design numbers)

- LBNL NERSC (ESS, ~30% loading): ~15% measured

- Other sites (based on actual loading and factory efficiency info):
 - A: 3% (11% with module shutdown, new UPS units, eco-mode)
 - B: 2% (5% with module shutdown and eco-mode)
 - C: 2% (8% with module shutdown, new UPS, eco-mode)

- Your mileage will vary!
LBNL NERSC Eco-Mode Experience

- ESS ("Energy Saving System")
- Required firmware upgrade, not cheap but very cost-effective
- 1100 kVA rating, one side of double-fed IT equipment
- Typical loading 25-50%
- Savings of 10-18%
- No problems (though no known outages)
What is “Advanced Eco-Mode”?

• Use of UPS bypass except when inverter is actually needed; inverter remains on

 – Less disruption to the waveform when there is a disturbance
 – Can act as harmonic filter
 – Slightly less savings than full Eco-Mode
Example of UPS in Advanced Eco Mode response to power failure

Outage Start

Inverter Operation

Schneider Electric
Questions
Contact Information

Steve Greenberg, P.E.
SEGreenberg@lbl.gov
(510) 486-6971

Lawrence Berkeley National Laboratory
MS 90-3074
Berkeley, CA 94720
https://datacenters.lbl.gov/