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ABSTRACT 
The Thermosyphon Cooler Hybrid System (TCHS) integrates the control of a dry heat rejection device, the thermosyphon cooler (TSC), with an open 
cooling tower. A combination of equipment and controls, this new heat rejection system embraces the “smart use of water,” using evaporative cooling when 
it is most advantageous and then saving water and modulating toward increased dry sensible cooling as system operations and ambient weather conditions 
permit. Innovative fan control strategies ensure the most economical balance between water savings and parasitic fan energy. The unique low-pressure-drop 
design of the TSC allows water to be cooled directly by the TSC evaporator without risk of bursting tubes in subfreezing ambient conditions. 

Johnson Controls partnered with two national laboratories—the National Renewable Energy Laboratory (NREL) in Golden, Colorado, and Sandia 
National Laboratories in Albuquerque, New Mexico—to deploy the TSC as a test bed at NREL’s high-performance computing (HPC) data center 
in the first half of 2016. Located in the Energy Systems Integration Facility (ESIF), this HPC data center has achieved an annualized average power 
usage effectiveness rating of 1.06 or better since 2012. Warm-water liquid cooling is used to capture heat generated by computer systems direct to water; 
that waste heat is either reused as the primary heat source in the ESIF building or rejected using evaporative cooling. This data center is the single largest 
source of water and power demand on the campus, using about 7,600 m3 (2.0 million gal) of water during the past year with an hourly average Internet 
technology load of nearly 1 MW (3.4 million Btu/h)—so dramatically reducing water use while continuing efficient data center operations is of 
significant interest. This new heat rejection system being deployed at the ESIF has gained interest because the climate at the laboratory in New Mexico is 
similar to that of the laboratory in Colorado, and the laboratory data centers in New Mexico utilize an hourly average of 8.5 MW (29 million Btu/h) 
and are also one of the largest consumers of water on-site. 

In addition to describing the installation of the TSC and its integration into the ESIF, this paper focuses on the full heat rejection system simulation 
program used for hourly analysis of the energy and water consumption of the complete system under varying operating scenarios. A follow-up paper will 
detail the test results. The evaluation of the TSC’s performance at the laboratory in Colorado will also determine a path forward at the laboratory in 
New Mexico for possible deployment in a large-scale system not only for data center use but also possibly site wide. 
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INTRODUCTION 

Large computer data centers generate significant amounts of waste heat that must be removed from the servers. 
Ideally, this low-grade heat can be used for other purposes—one useful possibility is for building heating. But if there 
is not a use for all the waste heat, the remaining heat must be rejected, typically to the atmosphere. Traditionally, 
system designers have had two basic choices for rejecting waste heat to the atmosphere: via sensible cooling, such as 
an air-cooled heat exchanger; or via evaporative cooling, such as a cooling tower. There are also many hybrid heat 
rejection systems. Some currently commercially available systems include all-in-one products that combine some 
functions of both evaporative and sensible cooling into a single product, parallel combinations of separate wet and dry 
cooling devices, and series combinations of dry and wet cooling devices. The thermosyphon cooler (TSC) hybrid 
system, developed by Johnson Controls, is an example of the latter. This system, a combination of equipment and 
controls, places a dry cooling device, a TSC, upstream and in series with a wet cooling tower. Johnson Controls 
partnered with two national laboraties—the National Renewable Energy Laboratory (NREL) in Golden, Colorado, 
and Sandia National Laboratories in Albuquerque, New Mexico—to deploy the TSC in Colorado as a test bed at the 
laboratory’s high-performance computing (HPC) data center in the first half of 2016. 

Traditional Choices for Rejecting Waste Heat to Atmosphere 

Air-cooled heat exchangers use the ambient air dry bulb (DB) temperature as the heat sink, meaning that the 
process fluid being cooled must be at a higher temperature than the ambient DB temperature. Air by itself is a 
relatively poor conveyor of heat. An amount of air of 28.3 L (1.0 ft3) increasing 5.6°C (10°F) in temperature is capable 
of removing only approximately 180 J (0.17 Btu) of heat; consequently, it takes a large volume of air movement to 
reject a given amount of heat to the atmosphere. Additionally, because the economical coil face velocity is limited to 
approximately 3 m/s (600 ft/min), air-cooled heat exchangers usually are quite large in plan area. The good news, 
though, is that they require no water. 

On the other hand, as the air is passed through a cooling tower, moisture is added to the airstream in an 
evaporative cooling process, as shown in Figure 1(a). This same 28.3 L (1.0 ft3) of air passing through a cooling tower 
and going through a 5.6°C (10°F) change in wet bulb (WB) temperature is now capable of removing approximately 
865 J (0.82 Btu) of heat. This represents approximately 380% more heat removed for every 28.3 L (1.0 ft3) of air 
moved through the cooling tower. This reduces not only the required fan energy but also the cooling tower’s plan area 
relative to the air-cooled heat exchanger. Additionally, the cooling tower heat transfer process is bounded by the lower 
ambient WB temperature instead of the higher ambient DB temperature. On hot summer days, the coincident WB 
temperature can be 11.1°C–22.2°C (20°F–40°F) lower than the DB temperature. This allows for significantly lower 
maximum process temperatures to be maintained. However, evaporatively cooled systems, such as those employing 
cooling towers, depend on a continuous source of low-cost water to reliably and economically address the cooling 
requirements. 

Water and wastewater costs have risen and are projected to continue to rise much faster than most other utility 
commodities. Increasing population, rising standards of living, and aging infrastructure along with changing weather 
patterns are increasing competition for and reducing the assured reliability of a continuous water supply. 

Although evaporative cooling systems have many performance advantages during peak summer conditions, these 
advantages diminish with cooler ambient temperatures and lower loads. Additionally, operational cost differences 
between evaporatively cooled and sensibly cooled systems are strongly influenced by the cost of energy, which can 
change significantly between peak and off-peak hours, and the cost of water. When looking at the range of ambient 
temperatures, heat rejection loads, and energy prices experienced during a year, it’s clear that the best option may be 
neither an evaporatively cooled system nor a sensibly cooled system but a hybrid combination of both. 
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Thermosyphon Cooler 

When conditions are favorable, the TSC, shown in Figure 1(b), precools the heated water in the main cooling 
loop before any remaining heat is removed across the plate frame heat exchanger connected to the cooling towers. At 
any given set of conditions, the water evaporated by the cooling tower is directly proportional to the thermal load 
applied to it. Cooling tower water usage is reduced because any thermal load removed sensibly to the atmosphere by 
the TSC is thermal load that no longer needs to be rejected by the cooling tower. The addition of the TSC upstream 
of the cooling tower allows the system to run “wet when it’s hot and dry when it’s not.” 

   

Figure 1 (a) Counterflow cooling tower diagram, (b) TSC, and (c) conceptual design of the TSC. 

The dry sensible TSC comprises a lower, easily cleanable flooded shell and tube evaporator and an overhead air-
cooled condenser. The onboard controller automatically and continuously adjusts the speed of the condenser fans 
based on ambient conditions, loads, and utility costs to achieve the most operationally cost-efficient way to reduce the 
overall system water usage. 

A diagram of the operation of the components is shown in Figure 1(c). Warm process water enters the tubes of 
the lower flooded shell and tube evaporator. As the water is cooled, refrigerant surrounding the high-efficiency, 
enhanced tubes absorbs the heat and begins to boil. This refrigerant vapor is then drawn to the colder surfaces of the 
overhead air-cooled condenser. Sensing the current ambient and process temperatures and knowing the current 
energy and water costs, the controller determines the optimum speed to run the condenser fans. As the heat is 
removed from the refrigerant vapor to the moving airstream, the vapor condenses back into liquid, where it collects in 
the vertical liquid header pipe connecting the outlet of the condenser to the inlet of the evaporator. The difference in 
liquid height between liquid in the vertical liquid riser and the level of the liquid refrigerant in the evaporator provides 
the gravity-driving force to circulate the refrigerant in the system. Refrigerant flows in a naturally recirculating and 
self-regulating manner from the evaporator to the condenser without the need for any pumps or compressors. 

Care must be taken when circulating water through any dry sensible cooling device that may be subjected to 
subfreezing ambient air conditions. In the TSC, if thermal load is lost during low ambient temperature conditions, a 
combination of sensors, valves, and controls automatically limits heat loss by stopping the refrigerant flow between 
the evaporator and condenser sections and energizing evaporator heaters as necessary to keep the water from 
freezing. 

INSTALLATION 

These two U.S. Department of Energy national laboratories have partnered on recent projects deploying HPC 
liquid-cooled systems and working through energy-efficient data center designs because the locations have similar 
climate conditions that provide many great opportunities for air- or water-side economization. Both have been 
learning from one another as they work toward having the ultimate energy-efficient data center with the least 
environmental impact. The combined data centers at the laboratory in New Mexico utilize an hourly average of 8.5 
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MW (29 million Btu/h) and are one of the largest consumers of water on site. This is one of the many reasons that 
the two national laboratories have partnered on this project, and the collaboration will assist in determining the 
operational value of the TSC. 

HPC Data Center 

Located in the Energy Systems Integration Facility (ESIF), this HPC data center has achieved an annualized 
average power usage effectiveness (PUE) rating of 1.06 or better since 2012 (PUE equals total data center power 
divided by Internet technology [IT] equipment power). Warm-water liquid cooling is used to capture heat generated 
by computer systems direct to water; that waste heat is either reused as the primary heat source in the ESIF building 
or currently rejected using evaporative cooling. This data center is the single largest source of water and power 
demand on campus, using approximately 7,600 m3 (2.0 million gal) of water during the past year with an hourly 
average IT load of nearly 1 MW (3.4 million Btu/h)—so dramatically reducing water use while continuing efficient 
data center operations is of significant interest. 

An energy-performance-based design-build process was used to construct the ESIF that took a holistic approach 
to energy efficiency to ensure a symbiotic relationship among the data center and the facility’s offices and laboratories. 
The request for proposal (RFP) prioritized key performance parameters as “Mission Critical,” “Highly Desirable,” and 
“If Possible” with energy criteria throughout. The RFP required the HPC data center to achieve an annualized PUE 
of 1.06 or lower and an energy reuse effectiveness (ERE) of 0.9 or lower by reusing waste heat from the data center to 
provide heat to other parts of the building. This led to the following design strategies: 

• Water-side free cooling, cooling tower plant 
• Low-approach cooling towers and heat exchanger  
• Low-pressure-drop air delivery system 
• Low-pressure-drop piping design 
• All fans and pumps utilizing variable-frequency drives. 
The data center was designed to support power and cooling infrastructure up to a maximum of 10 MW (34 

million Btu/h). It is currently equipped (generators, power distribution panels, cooling towers, fan walls, etc.) to 
power and cool up to 2.5 MW (8.5 million Btu/h) of electrical load from HPC equipment. Ample space is allotted for 
additional infrastructure that can be expanded in 2.5-MW modular increments. The cooling supply and return pipes 
are sized for the full 10-MW capacity. The data center floor provides approximately 930 m2 (10,000 ft2) of 
uninterrupted, usable machine room space, and it is designed to primarily house the liquid-cooled HPC and related 
systems. The facility does not utilize traditional computer room air handling units. Instead, for any heat load not 
dissipated to liquid, the facility utilizes a full hot-aisle containment strategy to eliminate mixing hot exhaust air with the 
cool supply air. 

The mechanical systems serving the data center are designed around ASHRAE 0.4% conditions (with N+1 
redundancy) and extreme WB conditions. Space temperatures within the data center are 25.6°C +/- 1.1°C (78°F +/- 
2°F), with dew points between 5.6°C–15°C (42°F–59°F) and relative humidity not more than 60%. The data center is 
situated at an elevation approximately 1,770 m (5,800 ft) above mean sea level. 

The energy recovery water (ERW) system provides hydronic cooling for both the HPC systems and fan wall 
equipment, as shown in Figure 2. The operational range of water delivered after the cooling tower heat exchanger is 
typically held from 18.3°C–21.1°C (65°F–70°F) so that supply air from fan walls is delivered in the range from 
20.6°C–23.3°C (69°F–74°F). The ERW loop is an isolated, closed-loop system. To ensure a high quality of waste heat, 
HPC and related equipment are required to regulate water flow to maintain design return water temperatures of or 
warmer than 35°C (95°F). As of July 2016, when the TSC will be commissioned, the total IT load in operation will be 
approximately 0.91 MW (3.1 million Btu/h). Of this operational load, 0.76 MW (2.6 million Btu/h) is for liquid-
cooled HPC systems, whereas the remaining 0.15 MW (0.5 million Btu/h) is for traditional air-cooled IT equipment. 
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HPC System Heat Rejection 

The current flagship HPC system located in the ESIF data center is called Peregrine, and it consists of a cluster 
of 2,592 server nodes capable of 2.24 PetaFLOPS dedicated to performing computational work. The ERW loop 
supplies cooling water at up to 26.7°C (80°F) to Peregrine’s 10 cooling distribution units (CDUs), which are located in 
separate IT racks placed between node racks on the data center floor. The CDUs act as the transfer mechanism 
between the warm water in the isolated server cooling loop and the ERW loop. CDUs distribute server loop water to 
each of Peregrine’s node racks. Inside the node racks, all the heat generated by electronics is transferred to the server 
loop water, which then returns to the CDUs. Water is returned from Peregrine’s CDUs to the ERW loop at up to 
40.6°C (105°F), although 37.8°C (100°F) is more typical under current operating conditions. 

 

Figure 2 Cooling system schematic for the HPC data center located in the ESIF. 

After the CDUs, the ERW loop passes through a plate-and-frame heat exchanger located in a mechanical room 
below the data center that is centrally located between the office and laboratory space for increased heat recovery 
efficiency to both building spaces. Data center waste heat is used to temper the outside ventilation air for the high-bay 
laboratories, and it is also used in active convective heat transfer chilled beams along the office space perimeter. The 
waste heat that cannot be recovered makes its way through the ERW loop first to the TSC, where it is rejected 
sensibly to the atmosphere; and then to a plate-and-frame heat exchanger connected to the cooling tower loop, where 
the waste heat is rejected evaporatively to the atmosphere. The cooling tower loop currently consists of four cooling 
towers that turn on in stages depending on the thermal load, with typical operation utilizing two towers at one time. 
Water is consumed by using the open-loop tower water system through evaporation, drift, and blowdown (the process 
by which the tower water keeps the dissolved solids under a desired count). Chemicals are also consumed in this 
process (biocides, corrosion inhibitor, and bio-dispersant) to keep the water at the needed balance to avoid fouling the 
piping or heat exchanger. Side-stream sand filters also operate to keep the cooling tower loop clean. The four cooling 
towers are paired with remote indoor sump tanks to eliminate the need for basin heaters, and all outdoor pipes are 
sloped so that water drains back into these tanks if the tower water system serving the data center is shut down. 

Integration. Only a one-day outage to the HPC data center was required to integrate the TSC into the ERW 
loop. This outage was needed to cut the 350-mm (14-in.) diameter ERW return pipe (prior to the cooling tower heat 
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exchanger) to install a control valve between the existing taps intended for the 7.5-MW and 10-MW (25.6 and 34 
million Btu/h, respectively) future upgrades (many years out) in order to minimize HPC production downtime. New 
150-mm (6-in.) pipes were installed to these taps to act as supply and return lines to the TSC unit, along with a 150-
mm (6-in.) control valve that works in conjunction with the 350-mm (14-in.) control valve, as shown in Figure 3(a). 
For this installation, when the TSC is running it will either reduce or remove the entire thermal load prior to the 
cooling tower heat exchanger interface. The other construction activities were conducted without impacting HPC 
operations, and they consisted of the following: a slight structural modification to the outside cooling tower platform 
to accommodate the TSC placement, running 150-mm (6-in.) pipes from inside the ERW tie-in points to the outside 
platform to connect to the TSC, electrical runs for the TSC panels and fans, lightning protection, and integrating 
controls with the building management system. A crane was used on two different occasions: first to lift steel pipe, 
followed by the steel platform material and the TSC unit itself. The TSC was placed on a platform intended for future 
cooling towers, as shown in Figure 3(b). Note that of the seven cooling towers shown, three are for the lab/office 
space (a separate, isolated system), and the other four handle the HPC data center load. Sufficient metering was also 
added to quantify power and water differences when the TSC is running or turned off. 

  

Figure 3 (a) Pipe modification to the ERW loop and (b) TSC installation. 

MODELING 

As part of the initial evaluation of both the current and hybrid cooling systems, an hourly-based annualized 
system simulation model was developed to predict how the total HPC heat rejection system would perform across all 
8,760 hours of a typical meteorological year. Detailed energy balances were conducted for each hour, and then the 
results were displayed on an interactive schematic diagram, as shown in Figure 4. Separate independent performance 
models were developed for the TSC, cooling tower, heat exchangers, pumps, and heating load demands. Then for the 
varying temperature conditions and utility costs for each hour of the year, data center loads were placed on the heat 
rejection system. Simulations were conducted to evaluate the impact of systems comprising different heat rejection 
components in operation and different control strategies. The interactive schematic allowed for real-time viewing of 
the hourly performance of all major system components along with calculations of key overall annual metrics. An 
average energy cost of $0.07/kWh and average fully burdened water cost of $1.61/m3 ($6.08/1,000 gal) were used in 
the modeling analysis. 

Some of the results from the preliminary analysis are shown in Figure 5 and Figure 6. Figure 5(a) shows the 
expected thermal load that will need to be rejected to the atmosphere. The initial simulations assumed a fixed total 
thermal load of 0.910 MW (3.1 million Btu/h). Starting at an outside DB temperature of 18.3°C (65°F), a portion of 
the heat created can be captured and constructively utilized by the building heating loop and thus start to reduce the 
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heat that needs to be rejected to the atmosphere. As the outside DB continues to drop toward 8.3°C (47°F), more of 
the heat created can be constructively utilized for heating the building until the amount of heat captured becomes 
limited by the minimum return temperature of the building heating loop. At this point, the maximum heat captured 
for building heat is 0.434 MW (1.5 million Btu/h), yielding a remaining 0.496 MW (1.7 million Btu/h) that must still 
be rejected to the atmosphere. 

 

Figure 4 Typical system simulation schematic screenshot from the simulation program. 

Figure 5(b) shows the projected cooling tower make-up water flow requirements with only the existing cooling 
tower system and with the hybrid cooling system as a function of the ambient DB temperature. With the current 
expected thermal loads, the TSC is able to handle the entire thermal load at DB temperatures cooler than 9.4°C 
(49°F), which occur approximately 50% of the year for this location. 

  

Figure 5 (a) System load rejected to the atmosphere and (b) cooling tower make-up flow rate. 
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As shown in Figure 6(a), on an annualized basis the system with only the cooling tower is projected to require 
slightly more than 8,300 m3 (2.2 million gal) of make-up water. Adding the TSC to build the hybrid cooling system 
reduces the annual cooling tower make-up water consumption to 3,700 m3 (0.98 million gal), a savings of 4,650 m3 
(1.23 million gal)—or 56%. 

Figure 6(b) shows the modeled total utility costs (energy + water) for the two heat rejection systems relative to 
the ambient DB temperature. On an annualized basis, the hybrid cooling system is projected to reduce the annual 
utility costs by 40% in addition to achieving a significant 56% annualized water savings. 
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Figure 6 (a) Annual cooling tower make-up volume and (b) hourly total utility operating costs. 

CONCLUSION 

Improving data center operational efficiency requires focusing on both energy and water use. The warm-water 
liquid cooling loop employed at the ESIF’s HPC data center has proven to be very energy efficient in operation, but it 
has a significant annual water use requirement. Initial system modeling results indicate that the use of a hybrid heat 
rejection system comprising a sensible heat rejection device located upstream and in series with an open cooling tower 
can significantly reduce both the annual water consumption and operational cost relative to the existing traditional 
cooling tower system. A follow-up paper will detail the test scenario conditions and provide the test results. These 
tests will also be used to validate the system simulation model and make any refinements as needed. The evaluation of 
the TSC’s performance at the data center in Colorado will also determine a path forward at the laboratory in New 
Mexico for possible deployment in a large-scale system—not only for data center use but also possibly site wide. 
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