Demonstrating a Dual Heat Exchanger Rack Cooler "Tower" Water for IT Cooling

contact: hccoles@lbl.gov October 24, 2012– Silicon Valley Leadership Group Data Center Efficiency Summit AMD, Sunnyvale California

H. Coles, S. Greenberg

Project Overview

W. F. Tschudi PI:

Henry Coles, Steve Greenberg Researchers:

California Energy Commission (CEC) **Sponsors:**

APC by Schneider Electric Partners:

> Synapsense LBNL Data Center – Building 50

Project Term: Concept July 2009/start July 2010-end Oct 2012

Wireless Instrumentation Solutions

Presentation

- Goal/Objectives
- Background/Methods
- Cooling Design Concept
- Reverse Engineering Construct Model
- Forward Engineering Calculate Results
- Conclusions

Project Goal/Objective

Goal: Demonstrate the benefits of cooling IT equipment using high temperature water using a unique cooling unit.

Objectives:

- Measure performance
- Develop a predictive model
- Calculate Metrics

Background / Methods

- 1. Discussed concept with APC
- 2. APC constructs prototype
- 3. Install Unit at LBNL Data Center
- 4. Instrument Heat Exchangers, Electrical Power and Air Temperature
- 5. Record Thermal/Power Performance
- 6. Reverse Engineer Heat Exchanger/Construct Closed Form Solution
- 7. Calculate Metrics/Plot Results /Draw Conclusions

APC Prototype Dual Hex Cooler

Demonstration Installation

Function Concept

Data Collection

Reverse Engineering Problem

Heat Exchanger Performance Not Provided gathered data need closed form model Estimated Single Heat Exchanger Performance 3000 Performance (watts / ITD °C) -25gpm 2500 -20gpm 2000 —15gpm 1500 —10gpm —5gpm

4000

Air Flow (cfm)

3000

6000

5000

7000

1000

500

0 0

1000

2000

Reverse Engineering (cont.)

Fit to Hex Theory: Cross Flow, One Fluid Mixed, Other Unmixed

C = mass flow rate x heat capacity

If Cmax = Cmixed (air)

$$E = 1 - \exp(-\text{Tau} * (C_{\text{max}} / C_{\text{min}}))$$

$$\uparrow$$

$$\text{Tau} = 1 - \exp(-N_{\text{tu}} * (C_{\text{min}} / C_{\text{max}}))$$

If Cmax = Cmixed (water)

$${}^{1}E = (C_{\max} / C_{\min}) * (1 - \exp(-Tau' * (C_{\min} / C_{\max})))$$

 \uparrow
 $Tau' = 1 - \exp(-N_{tu})$

solve for AU q (heat transferred) = $E C_{min} (T_{hot in} - T_{cold in})$ <u>calculate exiting temperatures</u> $(T_{hot out}, T_{cold out})$

¹Kays, W. M. and A. L. London. 1964. Compact Heat Exchangers, 2nd Edition. Stanford University. Page 19

Check Closed Form Solution

Compare Treated Heat Exchanger (Hex) Performance Measured vs. Estimate Using Selected UA and Theory UA = (3.3134 * LN (gpm)) - 2.976

e.g. Wat 12gpm = water flow is 12 gallons per minute, Fans Low = APC unit fans at low speed setting

Heat Exchanger Reverse Engineering Results

Results (forward engineering)

pPUE Comparison

100 cfm / kW, Server Inlet = 72°F, Tower Water = 68°F, Chilled Water = 45°F

Results (cont.)

Compare to Chill-Off 2 Devices

Conclusions

- Warmer (tower/economizer) water provides 30 to 50 % cooling efficiency improvements, compared to water supplied using compressor-based (chiller) cooling.
- Design minimizes compressor based cooling (individual localized economizer, lower pPUE)
- Fan energy has a significant effect on efficiency at high air flow rates.
- The prototype cooling unit compared favorably (20-30 percent improvement) to similar devices evaluated in a past PIER demonstration project (Chill-Off 2)

End Questions?

Backup Slides

SVLG 2012 - Sunnyvale California

Plant Model

kW / ton vs. supplied water temperature

COP Metric Definition

