Data Center Energy Efficiency Workshop

PG&E Emerging Technology Case Study – Submersion Cooling for Data Centers

Stephen Fok, PE Customer Energy Solutions Energy Efficiency Operations

PRESENTATION OUTLINE

- >PG&E Energy Efficiency Emerging Technology (ET) Program
- **>ET Projects for Data Center (DC)**
- DC Submersion Cooling Case Study Overview
- Case Study Goals
- Case Study Methodology
- Case Study Results
- ≻Questions

- Submersion Cooling for Data Centers
- Data Center Infrastructure Management (DCIM) of IT Systems
- Data Center Economizer Contamination and Humidity Study
- Efficient Power Supplies for Data Centers & Enterprise Servers

Air Flow Management in High Density Data Centers

Note: http://www.etcc-ca.com/reports/submersion-cooling-datacenters-0

Submersion Cooling Case Study Overview

- Technology Mineral Oil GRC CarnotJet System (4 tanks)
- Test Site Telecom Data Center (Load Density = 17 kW/rack)
- DC Configuration Raised Floor, partial Hot/Cold aisle, Ducted Return Air Plenum and Chilled water CRAHs with VSD fans.

Submersion Cooling Case Study - Goals

- 1. Technology Effectiveness Does it work??
- 2. Estimate Energy Savings for PG&E EE Program

Ð	Name	IT Load Density at Full Build-Out ^B		Design IT Load Density at Full Build-Out		Return Air Drybulb	Oper- ating Supply	Oper- ating Airside	RH Setpoint	Fan Airflow Effic-	Oper- ating CRAC/H Airflow
		Min	Max	Min	Max	Setpoint	Temp.	Delta-T ^C F	and Tolerance ^D	Metric ^E	Capacity G cfm
		W/sf	W/sf	kW/ rack	kW/ rack		F				
I	Hot Aisle/Cold Aisle, Open	0	100	0	10	74	64	10	50% +/- 10%	1,536	16,800
п	Hot Aisle/Cold Aisle, Ducted Return	101	220	0	10	78	65	13	50% +/- 10%	1,508	15,800
ш	Hot Aisle/Cold Aisle, Fully Enclosed ^A	221	400	0	10	85	67	18	50% +/- 10%	1,482	13,875
IV	In-Row Cooling Solution			10	30		-				

Case Study - Methodology

- 1. Eight tests were run within two weeks
- 2. Various combinations of server loadings, rack temp setpoint, and cooling water temp setpoint were tested.

Case Study - Results

Goal (1) – Does it work?? YES

- * The system was capable of maintaining the rack coolant temp at setpoint for all manufacturer test conditions (i.e., Test #1 and #4 through #8)
- * Test #2 and #3 failed. They were "Extreme Test" using operating conditions beyond manufacturer recommended temp.

Test No.	Server Power (kW)	Oil Temp (°C)	Water Temp (°C)	Coolant Oil Pump Power (kW)	CTE Flow (GPM)	CTE Pump Power (kW)	LMTD (°C)	Oil Pump (kW/ton)	CTE (kW/ton)	Total GRC Power (kW)	Total GRC (kW/ton)
1	69.81	45.1	29.0	0.61	121.6	2.04	10.34	0.031	0.103	2.65	0.134
2	69.80	46.8	32.0	0.80	128.2	2.39	9.45	0.040	0.120	3.19	0.161
3	69.77	35.1	18.0	0.86	128.5	2.40	10.93	0.043	0.121	3.26	0.164
4	69.78	40.1	24.0	0.83	127.8	2.37	10.40	0.042	0.119	3.20	0.161
5	69.82	45.1	24.0	0.29	91.3	0.88	13.48	0.015	0.044	1.17	0.059
6	69.84	45.1	18.0	0.15	72.5	0.45	17.53	0.007	0.022	0.59	0.030
7	69.84	40.2	18.0	0.33	93.5	0.96	14.34	0.017	0.048	1.29	0.065
8	44.83	40.0	18.0	0.08	54.4	0.19	14.35	0.006	0.015	0.27	0.021

Goal (2) – Theoretical Energy Savings Estimates

Questions?

Stephen Fok Email: skf2@pge.com Tel: 415-973-4735

