Saving Energy in Data Centers Low Cost Energy Efficiency Measures Case Studies

September 2013

Rod Mahdavi, PE. LEED AP Building Technologies Lawrence Berkeley National Laboratory (LBNL)

Objective

- Explore why saving energy in Data Centers?
- Get a general idea of the best practices
- Learn about low cost EEMs
 - Environmental conditions adjustments
 - Air management improvements
 - Chiller Plant
- Examine three Case studies

High Tech Buildings are Energy Hogs:

Comparative Energy Costs High-Tech Facilities *vs.* Standard Buildings

US Data Center Electricity Use - 2000, 2005, and 2010

2% of US Electricity consumption

Potential to double in next 5 years

Source: Koomey 2011

(Energy Efficiency = Useful computation / Total Source Energy)

Energy efficiency best practices

LBNL develops publically available resources

DC Pro tools Data Center Energy Practitioner program Computing metrics development

Federal consolidation guideline ESPC contract content

Wireless assessment kit Compressor- less cooling

Low Cost EEMs:

- Environmental conditions adjustments
- Air management improvements
- Chiller plant

Low Cost EEMs:

- Environmental conditions adjustments
- Air management improvements
- Chiller plant

ASHRAE 2011

ITE Environment – 2011 Environment Specifications Table (Partial)

Class		Dry Bulb (°F)	Humidity Range	Max Dew Point (°F)	Max Elevation	Max Rate of Change		
Previous	Current				(ft)	(°F / hr)		
Recommended								
1&2	A1 to A4	64.4 to 80.6	41.9°F DP to 60% RH & 59°F DP	N/A				
Allowable								
1	A1	59 to 89.6	20% to 80% RH	62.6	10,000	9* / 36		
2	A2	50 to 95	20% to 80% RH	69.8	10,000	9* / 36		
N/A	A3	41 to 104	10.4°F DP & 8% RH to 85% RH	75.2	10,000	9* / 36		
N/A	A4	41 to 113	10.4°F DP & 8% RH to 90% RH	75.2	10,000	9* / 36		

* More stringent rate of change for tape drives

C ASHRAE Table reformatted by DLB Associates

The Cost of Unnecessary Humidification

	۱ ۱	/isalia Prob	е	CRAC Unit Panel			
	Temp	RH	Tdp	Temp	RH	Tdp	Mode
AC 005	84.0	27.5	47.0	76	32.0	44.1	Cooling
AC 006	81.8	28.5	46.1	55	51.0	37.2	Cooling & Dehumidification
AC 007	72.8	38.5	46.1	70	47.0	48.9	Cooling
AC 008	80.0	31.5	47.2	74	43.0	50.2	Cooling & Humidification
AC 010	77.5	32.8	46.1	68	45.0	45.9	Cooling
AC 011	78.9	31.4	46.1	70	43.0	46.6	Cooling & Humidification
Min	72.8	27.5	46.1	55.0	32.0	37.2	
Max	84.0	38.5	47.2	76.0	51.0	50.2	
Avg	79.2	31.7	46.4	68.8	43.5	45.5	

Humidity down 3%

CRAC power down 28%

Low Cost EEMs:

- Environmental conditions adjustments
- Air management improvements
- Chiller plant

Goal: Supply air directly to equipment intakes without mixing

Recirculated air causes localized cooling problems

Adding Air Curtains for Hot/Cold Isolation

Low Cost EEMs:

- Environmental conditions adjustments
- Air management improvements
- Chiller Plant

Better efficiency of chiller with higher load factor

Sep 17 - 22, 2012

Condenser water supply temperature

Federal Data centers Case studies

Data center 1

Seal all floor leaks and those between and within the racks

Lesson learned: Seal the opening between the rack and floor

Supply Air temperature out of the perf tiles = 61.6degF

Air temperature between perf and rack pedestal= 89.1degF

Replaced Perf tiles

Redirect cold air from the CRAHs

Individual racks intake top temperature change during trials (60-72)

Average rack exhaust temperature change during trials (75-87)

CRAHs Supply Avg. Temperatures 53 to 62

CRAHs Return Avg. Temperatures 64 to 83

Slide 30

Chillers Efficiency Improvement

CHWST sp degF	45	49	54	56
CHWST degF	46	49	55.1	56.8
CH1 kW	75	75	0	0
CH2 kW	75	75	100	75
CH3 kW	75	50	75	75 Slide 31

Saved annually:

800MWh \$240,000 utility cost 780 metric tons of GHG emission 600

Data center 2

30,000 sf 1,850 kW IT 30GWh

Top rack intake temp before shutting down 20% of the CRAHs

Top rack intake temp after

Little rack intake temperature change after CRAHs shutdown

Tech Center Room 408 East: Minimum Rack Top Intake Temperature

Tech Center Room 408 East: Maximum Rack Top Intake Temperature

Tech Center Room 408 East: Average Rack Top Intake Temperature

Saved annually:

850MWh \$55,000 utility cost 820 metric tons of GHG emission

Data center 3

8,000 sf 800 kW IT 12GWh

Saved annually:

2,100MWh, \$125,000 utility cost 2,000 metric tons of GHG emission

Questions?

Rod Mahdavi, PE. LEED AP <u>mahdavi@lbl.gov</u> 510.495.2259

BERKELEY LAB