

United States Data Center Energy Usage Report

December 6, 2016

Arman Shehabi, Ph.D.

Research Scientist
Lawrence Berkeley National Laboratory

Before We Begin

- Please do NOT put the call on hold
- All lines have been muted, to be unmuted or to ask a question, please go to your meeting controls panel and raise your hand
- To submit questions via chat, click the chat button in the top right of your screen and a text box will appear in the bottom right. Please select to send your message to Elena Meehan, enter text, and press enter.
- Slides will be posted at <u>datacenterworkshop.lbl.gov</u>
- Attendees can receive a certificate of completion by filling out an evaluation form. Link is provided at the end of the presentation and will also be sent to you in a follow-up email.

Acknowledgments

Report Authors:

Arman Shehabi	Environmental and Energy Impact Division,	
Sarah Smith	Lawrence Berkeley National Laboratory	
Richard Brown		
Dale Sartor		
Mangus Herrlin		
Jonathan Koomey	Steyer-Taylor Center for Energy Policy and	
	Finance, Stanford University	
Eric Masanet	McCormick School of Engineering,	
	Northwestern University,	
Nathaniel Horner	Climate and Energy Decision Making Center,	
Inês Azevedo	Carnegie Mellon University	
William Lintner	Federal Energy Management Program, U.S.	
	Department of Energy	

- Report Reviewers (industry, advocates, government)
- DOE Federal Energy Management Program

Project Overview of Data Center Report

- Current and projected data center energy use through 2020
- Includes main authors of the 2007
 Data Center Report to Congress
- Additional chapter on "indirect effects" (e.g. telework)
- Draft report sent out for review to corroborate assumptions
 - Reviewers included industry and advocates
 - Comments from about 30 companies
 - Nearly 300 individual comments

Conventional Understanding of Data Centers

- Size range from "closets" to "hyperscale" facilities
- Experiencing major growth over last decade
- High building energy intensity (>100 W/ft2)
- Nearly 2% of U.S. electricity consumption
- Some server racks now designed for >30 kW
- Power and cooling constraints in existing facilities

Data center energy projections in 2007

Report to Congress on Server and Data Center Energy Efficiency Public Law 109-431

Brown et al., 2007, Report to Congress on Server and Data Center Energy Efficiency Public Law 109-431

Data Center Landscape Different than 2007

- Emergence of cloud computing and social media
 - IP traffic increasing 20% annually
- Dominance of "hyperscale" data centers
- Growth in data storage
 - 20x increase since 2007
- Internet of Things capabilities
- New IT equipment
 - "Unbranded" ODM servers
 - Solid state hard drives
 - Faster network ports

Data Center Market Assessment: Objective

Update model inputs to maintain accuracy and relevance...

- Characterize current market and trends
- Project energy demand growth
- Identify potential efficiency opportunities
- Obtain industry input and collaboration
- Establish an updatable Berkeley data center energy model
 - Self-contained, parametric modeling framework with improved resolution (i.e., "dials to turn")

Research Approach

- Leverage existing data center model, and update with
 - IDC, SPEC, ITI data for IT equipment characteristics & shipments
 - IT & infrastructure assumptions from lit review, industry feedback
- Disaggregate "product" data center operations
- Energy projections

under four scenarios

- Current Trends
- ImprovedOperation
- Best Practices
- Hyperscale Shift

Research Approach

 Expand IT equipment categories in current Berkeley data center energy model

Energy Use Estimates

Server Shipments: Growth of the Unbranded

- Nearly all server shipment growth since 2010 occurred in servers destined for large hyperscale data centers
 - Hyperscale data centers typically operate more efficiently
 - Growing percentage of overall data center activity

Increase virtualization and consolidation has tempered increase in

Large reduction in physical server demand within data centers

Server Shipments: 2-sockets dominate

- Nearly all unbranded servers are shipped with 2 sockets (i.e., 2-processor servers)
 - Single-socket server base remains at a constant level, but a diminishing fraction of the market

Server Energy Use: Power Scaling Ability

- Servers are improving in power scaling ability
 - Servers typically operate at 10-50% utilization
 - Idle servers often consume 50%–60% of power at full load
 - Increased power scaling reduces average power demand
- Huge improvements in "tested" power scaling, but different than real-world applications

Server Energy Use: Range of Power Scaling

- Dynamic range of server power scaling added to model
 - Best scaling (min value) improvement represented by SPEC
 - Worst scaling (max value) improvement from historical data
- In report, 90/10 max/min mix is applied to installed base

Server Energy Use at Average Utilization

- Max power estimates based on entries in SERT data base
- Steady max power over time assumed from historical observation
- Accounts for utilization differences in internal, service, and hyperscale data centers

Storage Shipments: Growth in Capacity

- Current storage a 20x increase since 2007
- Nearly a zettabyte (ZB) of storage capacity by 2020!

Storage Shipments: Installed Base of Drives

- Increased drive capacity (TB/drive) outpacing TB shipments
- Average drive efficiency continues to improve

Network Equipment

- Network scope limited to Level 2/Level 3 network ports in data centers
- Shift to faster port speeds
- Drastic improvements in per port efficiency

Infrastructure Energy: Power Use Effectiveness

- PUE values varies by data center size
- PUE values, anticipated to improve by 1% per year through 2020, except for closets

Space Type	Typical Size (ft²)	Average PUE
Closet	<100	2.5
Room	100	2.1
Localized	500-2K	2
Midtier	2K-20K	2
High-end	20K-100K	1.5
Hyperscale	>100K	1.2

Energy Use Estimates

Energy Use Estimates by Component

Data center energy use dominated by servers and infrastructure

Energy Use Estimates by Data Center Type

 Hyperscale is a growing percentage of data center energy use

Energy Use Estimates and Counterfactual

More Savings Available through Efficiency

- Stable energy demand while meeting drastic increases in data center services
- Near-term energy demand projected to continue to be constant
- Lots of energy savings still available in data centers

Efficiency Scenarios: Improved Management

- Remove inactive servers
- Improved PUE through thermal management

Efficiency Scenarios: Hyperscale Shift

- Aggressive move to the cloud
 - Consolidate of 80% of servers in non-hyperscale data centers into hyperscale by 2020
 - Excludes server provider rooms and closets

Efficiency Scenarios: Best Practices

Improved Management, plus:

- Improved PUE values
- Greater server/network consolidation
- Improved power scaling
- Reduced storage/network power

More Savings Available through Efficiency

- Annual saving in 2020 up to 33 billion kWh
- Represents a 45% reduction in electricity demand over current trends

Energy Efficiency &

Renewable Energy

Indirect Impacts

- Indirect impacts are characterized, each type with increasingly greater magnitude than direct impacts
 - All highly uncertain and variable
 - Net impact not clear
- Potentially decrease resource consumption through improved efficiency and substitution
- Other impacts could increase resource consumption or shift practices to more damaging activities

Future Challenges & Opportunities

Data center closet clunkers:

- Promote shift towards cloud and colocation
- Improving/removing remaining closet and other poorly operated smaller data centers

Changing Landscape:

 Growth of small "edge" network data centers to complement large hyperscale data centers

Beyond 2020:

- Established efficiency measures (consolidation, power scaling, low PUE) to eventually hit upper limit
- Computational/storage demand only increasing

the early days at LBNL...

Resources

- Report for download: https://datacenters.lbl.gov/resources/united-states-data-center-energy-usage
- Article on Indirect Data Center Impacts:
 Known unknowns: indirect energy effects of information and communication technology, Environ. Res. Lett. 11 103001
 https://dx.doi.org/10.1088/1748-9326/11/10/103001
- Center of Expertise website: <u>datacenters.lbl.gov</u>
 - Information on best practice technologies and strategies (Technologies)
 - Tools covering areas such as air management and writing an energy assessment report (Tools)
 - Database of resources including reports, guides, case studies (Resources)
 - Need assistance? (Contact Us form)

Questions?

- To be unmuted to ask a question, please go to your meeting controls panel and raise your hand
- To submit questions via chat, click the chat button in the top right of your screen and a text box will appear in the bottom right. Please select to send your message to Elena Meehan, enter text, and press enter.
- Slides will be available at <u>datacenterworkshop.lbl.gov</u>
- For content-related questions after the webinar, please email Arman: ashehabi@lbl.gov
- Other questions? Please email Elena: <u>Elena.Meehan@ee.doe.gov</u>

Attention Participants

In order to receive a certificate of completion, you **must** fill out the FEMP workshop evaluation form.

Access the FEMP workshop *evaluation form* and *certificate of completion* using this link:

https://fempcentral.energy.gov/Training/EventRegistration/EvaluationForm.aspx

