

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

Data Center Toolkit Webinar Series: Part 3 - Air Management

October 7, 2020

Webinar Logistics

- This webinar is being recorded. The Q&A section will not be made publically available.
- Your phone will be muted throughout the webinar.
- Enter any questions in the Question Box throughout the webinar.
- Instructions to take the quiz will be provided at the end of webinar.
- Slides will be sent out afterwards to those who attend the entire webinar.

Today's Speakers

Rachel Shepherd Data Center Program Lead Federal Energy Management Program rachel.shepherd@ee.doe.gov 202-586-9209

Magnus Herrlin Center of Expertise for Energy Efficiency in Data Centers Lawrence Berkeley National Laboratory <u>mkherrlin@lbl.gov</u>

Steve Greenberg Center of Expertise for Energy Efficiency in Data Centers Lawrence Berkeley National Laboratory segreenberg@lbl.gov

Ian M. Hoffman Center of Expertise for Energy Efficiency in Data Centers Lawrence Berkeley National Laboratory <u>ihoffman@lbl.gov</u>

CENTER OF EXPERTISE FOR ENERGY EFFICIENCY IN DATA CENTERS

Webinar Agenda

	Agenda
l. –	Introduction
II.	Air Management: Challenges and Opportunities
III.	Air Management Tool Suite and Key Metrics
IV.	Resources and Q&A

Learning Objectives

- Airflow and temperature aspects of data center operations, challenges in air management and opportunities to save energy and improve the thermal IT environment;
- Center of Expertise air management tool suite: The Air Management Tool, the Air Management Estimator and the new Air Management Lookup Tables;
- Key data requirements, calculation of two key Air Management metrics, interpretation of those metrics and tool outputs; and
- Ways in which the tool contribute to a concrete plan of action and budget and engender institutional support for retrofits and energy-efficient procurements.

Third in a Four-Webinar Series

Webinar 4: IT Efficiency December 7 from 1:00 – 2:30 pm EDT Link coming soon

Air Management: Challenges and Opportunities

First, What is Air Management?

- Air management in data centers is about keeping cold and hot air from mixing
 - Cold supply air should enter the heat-generating ITequipment without mixing with hot air
 - Hot exhaust air from the IT-equipment should return to the air handler without mixing with cold air.
- Managing the cold and hot air streams is important for cooling infrastructure energy management, IT equipment thermal management, and capital management.

Equipment Intake Conditions

Air-cooled electronic equipment depends exclusively on the *intake* air temperature for effective cooling. Today, most environmental specifications refer to the intake conditions.

Temperature Measurements

It is not necessary to collect data for every IT rack. Measuring every other or third rack is generally adequate. The racks at the end of the equipment rows should be included.

Three probes per measured IT rack is recommended. These probes should be placed at three elevations ("knee, hip, and head") directly on the perforated front door to the rack.

For more guidance, please follow the link below.

https://datacenters.lbl.gov/resources/datacenter-airmanagement-tool-data-collection-guide

Key Nomenclature

Recommended range (statement of reliability): Preferred facility operation; <u>most</u> values should be <u>within</u> this range.

Allowable range (statement of functionality):

Robustness of equipment; no values should be outside this range.

ASHRAE Environmental Guidelines

- Default <u>recommended</u> range = 64.4 80.6F
- Provides guidance for operating above the default upper limit
- Default <u>allowable</u> range = 59.0 89.6F (Class A1)
- Six classes with allowable ranges up to 113.0F

Opportunity: Data Center Energy Efficiency

Adopting the ASHRAE or NEBS environmental criteria provides opportunities for reduced cooling energy use.

With proper air management, the supply temperature can often be raised well above 65°F (18°C) without negatively affecting the thermal IT environment.

Energy savings can be realized in the following areas:

- Improved chiller efficiency
- Increased economizer utilization (> min. outdoor air)
- Reduced energy for humidification/dehumidification.

Key Challenge #1: By-Pass Air

By-pass air does not participate in cooling the gear and should be minimized. At the room level, net by-pass air will always happen when the supply airflow is higher than the IT equipment airflow. At the rack level, however, leakage pathways may be the sole cause.

Key Challenge #2: Recirculation Air

Recirculation air often causes hotspots and should be minimized. At the room level, net recirculation air will always happen when the supply airflow is lower than the IT equipment airflow. At the rack level, however, leakage pathways may be the sole cause.

Result of By-pass and Re-circulation Airflow: Typical Temperature Profile of Intake Side of Row with Under-floor Supply

There are numerous references in ASHRAE.

See for example V. Sorell et al; "Comparison of Overhead and Underfloor Air Delivery Systems in a Data Center Environment Using CFD Modeling"; ASHRAE Symposium Paper DE-05-11-5; 2005.

Action: Maintain Raised-Floor Seals

Maintain seals of all potential leaks in the raised floor plenum

Unsealed cable penetration (inside rack)

Sealed cable penetration

Action: Manage Blanking Panels

- Any opening will degrade the separation of hot and cold air
- Maintain blanking panels
 - One 12" blanking panel reduced temperature ~20°F

Action: Reduce Airflow Restrictions & Congestion

Ceiling Cavities

Patterns

Ceiling Cavities

Option: Air Distribution Return-Air Plenum

Enhanced Isolation Options

- Physical barriers enhance separate hot and cold airflow
- Barrier placement must comply with fire codes
- · Curtains, doors, or lids have been used successfully

Action: Add Air Curtains for Hot/Cold Isolation

Opportunity: Cold Aisle Containment Example

LBNL's Cold Aisle Containment study achieved fan energy savings of ~75%

Options: Hot or Cold Aisle Containment

Subzero Cold-Aisle Containment

APC Hot-Aisle Containment (with in-row cooling)

Ceilume Heat Shrink Tiles

Key Air Management Metrics

Air Management Metrics

Two metrics are used in the DOE Air Management Tools:

 The Rack Cooling Index (RCI) is a measure of compliance with ASHRAE/NEBS temperature specifications. This metric is not a simple ratio. RCI is ≤ 100%.

• The Return Temperature Index (**RTI**) is a measure of net by-pass or net recirculation air in the data center. It is the ratio of total IT equipment airflow to total air-handler airflow.

Air Management Metrics: RCI

Thermal specifications become useful when there is an objective way of determining the operating compliance. The Rack Cooling Index (RCI) is such a metric. It provides a measure of compliance with any air intake temperature specification, e.g., ASHRAE.

Herrlin, M. K. 2005. Rack Cooling Effectiveness in Data Centers and Telecom Central Offices: The Rack Cooling Index (RCI). ASHRAE Transactions, Volume 111, Part 2. http://www.ancis.us/publications.html

Air Management Metrics: RTI

Typically, more air is delivered by the cooling system than is drawn into the IT equipment due to net by-pass air. Poor air management is generally the driver for over-provisioning the airflow. RTI is a measure of net by-pass or net recirculation air. It is the ratio of total equipment airflow to total air-handler airflow.

nterpretation:	Net	Balanced	Net		
	By-Pass	Airflow	Re-circulation		
	<100%	100%	>100%		

Nearly all data centers have by-pass AND re-circulation.

Herrlin, M. K. 2005. Rack Cooling Effectiveness in Data Centers and Telecom Central Offices: The Rack Cooling Index (RCI). ASHRAE Transactions, Volume 111, Part 2. http://www.ancis.us/publications.html

Air Management Tool Suite

Air Management Tool Suite

Air management is about keeping cold and hot air from mixing – key to cooling efficiency and IT thermal management.

We will look at three tools for analyzing air management, from the most detailed to the quickest.

- The Air Management Tool (Excel)
- The Air Management Estimator (Excel)
- The Air Management Lookup Tables.

http://datacenters.lbl.gov/Tools

The Excel Air Management Tool

The Excel-based <u>AM Tool</u> was developed to fasttrack energy savings in data centers. It provides:

- Potential for reducing supply airflow
- Potential for increasing supply air temp
- Measure conformance with ASHRAE
 Thermal Guidelines
- Estimates of energy and energy cost reduction for fans/chillers
- Air management recommendations

http://datacenters.lbl.gov/Tools

Tool Documentation

These documents are the official resource in using the DOE Air Management Tool

Air-Handling Units

А	В	С	D	E	F	G	Н	1	J	К	L	М	N	0	Р	Q	R	S	Т	U	4
ton 1. Ak	IU (AIR HANDLE	R LINITS)																			
ich I' W		N ONITSJ																			
				_																	
	AHU	Supply Air	Return Air					By insertin	g the request	ed AHU dat	a (yellow o	ells) for u	ip to 40 ope	erating							
	Airflow	Temperature	Temperature	SA	RATw	ΔT_W		units, this	spreadsheet v	will calculat	e four piec	es of data	orange bo	oxes)							
	[cfm] or [m3/s]	[F] or [C]	[F] or [C]	[F] c [C]				and insert	them on the I	Main Input	(Step 4) sh	eet. It is ir	nperative t	0							
AHU 1	10000	65	75	21 7				enter (accu	ırate) data on	this sheet.											
AHU 2	20000	65	80	43 3	53.3																
AHU 3				0.0	0.0				oal purpose of												
AHU 4				0.0	0.0				ire Index (RTI												
AHU 5				_	0.0				int role in und			he data ce	enter is ove	r-							
AHU 6 AHU 7					<u> </u>			(by-pass) d	or under (recir	culation) v	entilated.										
AHU 7					0.0			Noto: AHU	data are cons	idorod mo	o accurato	than Equi	inmont dat	. .							
AHU 9					0.0	N/A			t Power (heat						D	otur	nΛi	r Tor	mno	ratu	ro (DAT
AHU 10						N/A		Equipment	in oner (neur	, is set equ		, and a grad	ie cooling.		- 14	etun		rei	npe	ratu	re (RAT
AHU 11						N/A		Note: Gray	ed out data fo	or internal u	ise only.							and	Airf		
AHU 12				0.0	0.0	N/A												anu	AIII	IOW	
AHU 13									^	. 1	• .			A * .				_	_	_	
AHU 14						A	HU		Sup	ply A	lr l	Re	eturn	i Air							
AHU 15				_																	
AHU 16				_		l Air	flow	/	Temp	perat	ure	Ter	nper	ature							
AHU 17 AHU 18				_					· • · · · r												7 /
AHU 18				_		[cfm] c	n [m	$\frac{3}{c^{1}}$	[[]]	or [C	1	ſ	F] or	[0]							
AHU 20						լսույս	יוין ת	12/2]	נין		·]	L	1] 01	[U]			CRAC	:/H			
AHU 21					11114	10				CE			75					// 1			
AHU 22					HU 1	10	0000			65			75	1							
AHU 23										<u></u>											
AHU 24					HU 2	20	0000			65			80								
AHU 25				_											_						
AHU 26				— I A	HU 3										_						
AHU 27 AHU 28				_											_						
AHU 28 AHU 29				-	HU 4													_			
AHU 30				^	104												N			N	
AHU 31				0.0	0.0	N/A											\checkmark			\checkmark	
AHU 32																	•		-	•	
AHU 33															0			. т.			
AHU 34															5	uppl	iy Al	r ie	mpe	erati	ıre (SAT
AHU 35																•••	-		•		`
AHU 36																					
AHU 37																					
AHU 38																					*
AH11 30	rerview Step 1	AHU Step 2 F	quip Step 3 R	CI 🦯 Step 4 M	lain Input 🦯 St	ep 5 Main Results	🔀 Step 6	Energy Result	ts Lookup	Action Ru	les Expo	rt / 🞾 /								►]	
► ► IOv																					
> > > > > > > > > > > > > > > > > > >												_						100%		U (U 1:27 PM	+)

IT Equipment

Rack Cooling Index (RCI)

Air Management Improvements

Input Data:

- Current
- Target

	9	- (<u>u</u> -) -						Copy of a	AM Tool v1.1	6 (5-10-11) MASTER I-P	+ Export + R	TI + CAV [Compatibility N	Mode] - Microsoft Excel							- = x
	Home	Insert	Page La	yout Fo	rmulas I	Data Re	view Vie	ew Acro	bat										۲	_ = ×
Paste	K Cut La Cop ≪ For		Calibri B Z	- 11 U - 199 -		= =	<mark>= ≫-</mark> ≡ ∉ ∉	Wrap		General • \$ • % • *.0 .00	Conditional Formatting ~ a	Format Neutral	Bad Good Calculation Chec	i k Cell	Inser	t Delete Fo	armat		Sort & Find &	
	Clipboar			Font			Align	ment	6	Number 🕞	ronnatting a		lyles			Cells		Editi		
A067 • 6 5												×								
	А	В	С	D	E	F	G	Н	1	J	К	L	М	N	0	Р	Q	R	S	Т
22																				
23 24		Table B: Q	uestions (Yellow cel	ls: Enter da	ita).														
24																				
25 26 27 28 29		Question										Current	Target							
26			Primary							commended Actions)										
27		1	Recommended IT equipment intake temperature range (statement of reliability)									ASHRAE/NEBS	Wide							_
28		2	Allowable IT equipment intake temperature range (statement of functionality) Aisle containment quality/implementation?									ASHRAE LOW	NEBS HIGH							
30		3							mentation?			MID	MID							
31		5								d-floor cooling)?		MID	MID		1					
32		6		Tile/diffu					innormalse	a noor cooning).		MID	MID							
33		7							mplementat	ion?		MID	HIGH							
34		8						T sensing)				LOW	HIGH							
35		9		AHU mod	ularity/dist	ribution q	uality/imp	lementatio	on (set to "H	igh" if not raised-floor	cooling)?	LOW	HIGH							
34 35 36		10		Cable/pip	e manager	ment in su	pply air pat	th quality/i	mplementa	tion?		LOW	HIGH							
37			Seconda	ry Input (in	npact on re	commend	ed Actions	only)												
38		11		What is th	e clear cei	ling in fee	t (or m) (vi	sible floor	to visible ce	iling)?		9								
39 40		12		Is there a	dropped o	eiling (not	necessaril	y used as a	irflow plenu	im)?		Yes								
40		13			quipment a							No				N				
41		14			cosmetic o							Yes								
42		15								e stand-by units)?		2	Also Primary Input							
43		16							s the averag	e?		Yes								
44		17							solution)?			No				1				
45		18			he predom			17				Floor Plenum								
16		10		Dian	im hoidht	in toot for	m19													

Question		Current	Target
	Primary Input (impact on Energy estimatesif raised-floor coolingand recommended Actions)		
1	Recommended IT equipment intake temperature range (statement of reliability)	ASHRAE/NEBS	Wide
2	Allowable IT equipment intake temperature range (statement of functionality)	ASHRAE	NEBS
3	Aisle containment quality/implementation?	LOW	HIGH
4	Blanking panels in and between racks quality/implementation?	MID	MID
5	Floor leakage quality/implementation (set to "High" if not raised-floor cooling)?	MID	MID
6	Tile/diffuser placement quality/implementation?	MID	MID
7	EC-Class (equipment ventilation protocol) quality/implementation?	MID	HIGH
8	Controls sophistication (CAV/VAV with IAT sensing)?	LOW	HIGH
9	AHU modularity/distribution quality/implementation (set to "High" if not raised-floor cooling)?	LOW	HIGH
10	Cable/pipe management in supply air path quality/implementation?	LOW	HIGH

Results: Energy Savings

Fan Energy

Chiller Energy

Results: Takeaways

Fan Energy:

- The reduction in fan energy is often very large due to the fact that the fan energy vary with nearly the cube of the airflow. It is not uncommon to be in the 70%-80% range.
- If constant air volume (CAV) fans are used, the relationship between energy and airflow is only linear resulting in less savings.

Chiller Energy:

- The chiller-energy savings only takes into account the increase in supply air temperature. It is assumed that each °F [0.6°C] increase of the supply air temperature will result in a 1-3% savings on chiller energy.
- Additional savings are due to better utilization of air-side economizers. This depends on factors not covered in the Tool. Higher supply air temperatures may result in higher server airflows and higher costs.

Say we want to understand how much energy we could save by making a number of air management changes to our equipment room and operations.

The next slide shows the changes we are planning and how they would affect the energy for supply fans and chillers.

The Air Management Tool – Ex 1 Results

Question		Current	Target
	Primary Input (impact on Energy estimatesif raised-floor coolingand recommended Actions)		
1	Recommended IT equipment intake temperature range (statement of reliability)	ASHRAE/NEBS	Wide
2	Allowable IT equipment intake temperature range (statement of functionality)	ASHRAE	NEBS
3	Aisle containment quality/implementation?	LOW	HIGH
4	Blanking panels in and between racks quality/implementation?	MID	MID
5	Floor leakage quality/implementation (set to "High" if not raised-floor cooling)?	MID	MID
6	Tile/diffuser placement quality/implementation?	MID	MID
7	EC-Class (equipment ventilation protocol) quality/implementation?	MID	HIGH
8	Controls sophistication (CAV/VAV with IAT sensing)?	LOW	HIGH
9	AHU modularity/distribution quality/implementation (set to "High" if not raised-floor cooling)?	LOW	HIGH
10	Cable/pipe management in supply air path quality/implementation?	LOW	HIGH

We have a data center with 20 measured intake air temperatures. We operate with the ASHRAE recommended range of 65-80F and the allowable A1 range of 59-90F. What is the operating compliance with the ASHRAE Guideline?

The Air Management Tool – Ex 2 Results

#	Intake Temp [F] or [C]
1	58
2	72
3	68
4	62
5	81
6	65
7	56
8	71
9	65
10	68
11	60
12	69
13	62
14	73
15	64
16	65
17	58
18	67
19	58
20	69
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	

The Excel Air Management Estimator

The <u>AM Estimator</u> is a simplified version of the Air Management Tool, using the same engine. The input has been reduced for ease of use.

http://datacenters.lbl.gov/Tools

The Air Management Lookup Tables

This resource presents energy savings for chiller and fan equipment in a new tabular format for different air management upgrade scenarios. The tables can be used to quickly estimate the potential savings for different air management scenarios. An example:

AM Measure (AM Tool)	Reference	P1	P2	Р3	P4	P5
			Matched		Target	
1: Recommended Range ¹	65°F–80°F	65°F–80°F	65°F–80°F	65°F–80°F	65°F–80°F	65°F–80°F
2: Allowable Range ²	N/A	N/A	N/A	N/A	N/A	N/A
3: Aisle Containment	L	L	L	М	Μ	Н
4: Blanking Panels	L	М	М	М	Н	Н
5: Floor Leakage	L	М	М	М	М	Н
6: Tile Placement	L	М	Н	Н	Н	Н
7: EC-Class	Н	Н	Н	Н	Н	Н
8: CAV/VAV (CRAC)	L (CAV)	L (CAV)	H (VAV)	L (CAV)	H (VAV)	H (VAV)
9: CRAC Modularity	M (2) or					
	H (3)					
10: Cable Management	L	L	L	L	М	М

¹ The ASHRAE Recommended Range is used throughout.

² The ASHRAE Allowable Range does not enter the energy calculations.

http://datacenters.lbl.gov

Air Management Lookup Tables

	Target				
Match	P1	Р3	P2	P4	P5
Ref. 2.51 (typical)		2224			
CAV	-33%	-33%	-76%	-80%	-90%
P1 - 1.67 CAV		0%	-26%	-39%	-69%
P3 - 1.67 CAV			-26%	-39%	-69%
P2 - 1.5 VAV				-18%	-58%
P4 - 1.4 VAV					-49%
CRAC/IT Airflow	1.67	1.67	1.5	1.4	1.1
	CAV	CAV	VAV	VAV	VAV

Look-Up Table with Percentage <u>Fan</u> Energy Savings and CRAC Flow/IT Airflow Ratio for Data Center with Three (3) CRAC Units

	Target				
Match	P1	Р3	P2	P4	Р5
Ref - 66F	-10%	-12%	-12%	-16%	-20%
P1 - 71F		-2%	-2%	-6%	-10%
P3 - 72F			0%	-4%	-8%
P2 - 72F				-4%	-8%
P4 - 74F					-4%
SAT	71F	72F	72F	74F	76F

Look-Up Table with Percentage <u>Chiller</u> Energy Savings and Supply Air Temperature (SAT) for Data Center with Three (3) CRAC Units

Fan

Energy

Chiller

Energy

Resources and Q&A

FEMP's Data Center Program

FEMP's Data Center program assists federal agencies and other organizations with optimizing the design and operation of data centers. design and operation of energy and water systems in data centers to enhance agency's mission.

Assistance

- Project and technical assistance from the <u>Center of Expertise</u> including identifying and evaluating ECMs, M&V plan review, and project design review.
- Support agencies in meeting OMB's Data Center Optimization Initiative requirements

Tools

- <u>Data Center Profiler</u> (<u>DC Pro) Tools,</u> including PUE Estimator
- <u>Air Management</u> <u>Tools</u>
- <u>Energy Assessment</u> <u>Worksheets</u>
- <u>The Energy</u> <u>Assessment Process</u> <u>Manual</u>

Key Resources

- <u>Better Buildings Data</u>
 <u>Center Challenge and</u>
 <u>Accelerator</u>
- Small Data Centers, Big Energy Savings: An Introduction for Owners and Operators
- Data Center Master
 List of Energy
 Efficiency Actions

Training

- Better Buildings
 <u>webinar series</u>
- Nine on-demand
 FEMP <u>data center</u>
 <u>trainings</u>
- <u>Center of Expertise</u>
 <u>Webinars</u>
- Data Center Energy
 Practitioner Trainings

•

•

LBNL's Center of Expertise (CoE)

Visit us at datacenters.lbl.gov

CoE Data Center Energy Efficiency Toolkit

Federal Project Executive

Federal Project Executives (FPEs)

Scott Wolf Western Region 360-866-9163 wolfsc@ornl.gov

Doug Culbreth Southeast Region 919-870-0051 culbrethcd@ornl.gov

Tom Hattery Northeast Region 202-256-5986 thomas.hattery@ee.doe.gov

Today's Speakers

Rachel Shepherd Data Center Program Lead Federal Energy Management Program rachel.shepherd@ee.doe.gov 202-586-9209

Magnus Herrlin Center of Expertise for Energy Efficiency in Data Centers Lawrence Berkeley National Laboratory <u>mkherrlin@lbl.gov</u>

Steve Greenberg Center of Expertise for Energy Efficiency in Data Centers Lawrence Berkeley National Laboratory segreenberg@lbl.gov

Ian M. Hoffman Center of Expertise for Energy Efficiency in Data Centers Lawrence Berkeley National Laboratory ihoffman@lbl.gov

CENTER OF EXPERTISE FOR ENERGY EFFICIENCY IN DATA CENTERS

Questions?

IACET Credit for Webinar

The National Institute of Building Sciences' (NIBS) Whole Building Design Guide (WBDG) hosts the FEMP training program's learning management system (LMS).

The WBDG LMS:

- Allows for taking multiple trainings from multiple organizations through one platform.
- Houses the assessments and evaluations for all accredited courses.
- Allows you to:
 - Track all of your trainings in one place.
 - Download your training certificates of completion.
- Eases the CEU-achievement process.

Visit the WBDG at <u>www.wbdg.org</u> to view courses and create an account

IACET Credit for Webinar

To receive IACET-Certified CEUs, attendees must:

- Attend the training in full (no exceptions).
 - If you are sharing a web connection during the training, you must send an e-mail to Elena Meehan (<u>elena.meehan@ee.doe.gov</u>) and indicate who was on the connection and who showed as connected (will reflect in the WebEx roster).
- Complete an assessment demonstrating knowledge of course learning objectives and an evaluation within six weeks of the training. A minimum of 80% correct answers are required for the assessment.

To access the webinar assessment and evaluation, visit:

https://www.wbdg.org/continuing-education/femp-courses/femplw08042020

If you have a WBDG account and enrolled previously, simply log in and click the *Continuing Education* tab on the user account page. Click *Proceed to Course* next to the course title.