

High Performance Computing with High Efficiency

William Tschudi June 22, 2009 ASHRAE Louisville, Ky. WFTschudi@lbl.gov Co-authors: Steve Greenberg, Lead author, LBNL Amit Khanna – Arup North America Limited + WIL

RUP

UC Berkeley's Computational Research and Theory (CRT) Facility

- A new high performance supercomputer center for scientific computing in Berkeley, California
- High Performance Computing (HPC) center on first floor
 - 32,000 square feet computer room
 - 7.5 MW initial total power requirement, expanding to 17 MW
- Offices on second and third floors
- Mechanical space below HPC, chiller plant adjacent
- Total gross square feet 126,000
- 2012 occupancy ?

<u>Computational Research and Theory</u> (CRT) Facility

48 4181

South-West View

The Site Context

Note Line

ESTREE

Computational Research and Theory (CRT) Facility rendering

Supercomputer systems power

Historical change in supercomputer intensity

Site: CRT building:

Effect of CRT:

12 MW; 77 GWh; 2,132k GSf 17 MW; 150 GWh; 32k computer room

peak power x 2.4 annual electricity x 2.9

CRT Project objectives

Major Project Objectives

- Leading HPC capability
- Model of energy efficiency
- Maximum flexibility for future systems
 - Computer systems layout
 - Air and/or liquid cooling
 - Front to back or bottom to top airflow
- Energy efficient infrastructure
 - DCiE 0.83 or higher based on annual energy
 - Efficient system design
 - Use of waste heat

DCiE = IT energyTotal energy

DCiE design goal

DCiE higher than any benchmarked centers = .83

Mechanical design challenges

- Many generations of high performance computers over several decades
- High computing load densities: 20 30 kW/rack
- Potential mix of air, liquid, or hybrid cooling
- Potentially different temperature and humidity requirements for different computer systems and other IT equipment
- Budget: must be life cycle cost effective

Design advantages for efficiency

- Minimal requirements for Uninterruptible Power Supplies (UPS) since work involves only scientific computing
- Mild climate suitable for economizer cooling
- Ability to use full ASHRAE TC 9.9 range of recommended temperature and expanded humidity range
- Integrated Architectural MEP design

Design features

- Flexibility for air or liquid cooling
- Large efficient air handlers
- Integrated modular design
- Liquid cooling capability
- Part load modulation

- Environmental conditions
- Air side economizers and evaporative cooling
- Integrated water side economizer
- Air management
- Power distribution
- Use of heat recovery

Flexibility for air or liquid cooling

- Advanced HPC systems pushing limits of air cooling
- Systems could be built that:
 - Continue to be air cooled
 - Have liquid cooled cabinets removing some or all of the heat
 - Have liquid cooling to the processors
 - Use combination of refrigerant and liquid
 - Others?
- Network or storage equipment may continue air cooling even if servers require liquid

Large efficient air handlers

Applying sound HVAC engineering to air movement:

- Efficient fans and motors
- Low system pressure drop/ face velocity
- Variable speed
- Modular layout
- Effective air management

HVAC Components Initial Pressure Drop Components (in. w.g.) **Outside Air Louvers** 0.15 0.20 **Outside Air Dampers Filters** 0.35 Direct Evap. Media Pad 0.25 0.25 Chilled Water Coil Ductwork+Plenum+Outlets 0.30 14 Total 1.5

Design Pressure Drops Across Major

Modular design

Building and system modular build out

- Add as you go
- Build only what you need
- Space to add systems later

A building information model (BIM) was developed

Modular cooling plant

- Large headers sized for efficient operation for future loads even higher efficiency in the interim
- All pumps, fans, and compressors are variable speed
- Unequal chiller sizes for better turn-down and load matching
- Optimal control for maximum overall plant COP at any load and outdoor condition
- Space for additional chillers and towers for future loads
- Headers, valves and caps for modularity and future flexibility allow additions without shutting down

Liquid cooling capability

Use of chilled water or treated water connected to cooling tower through heat exchanger

- 4 pipe system allows all of one or the other or mixing
- Blanked off for future addition
- Space for piping provided
- Reset for efficient operation

Part load operation

HPC systems operate fully loaded however systems will be added and removed over the life of the facility varying the cooling requirements significantly

- Modular
- Variable speed everything
 - tower fans
 - chilled water pumps
 - condensing water pumps
 - chiller
 - exhaust fans
 - main air handler fans
- Controls

Environmental conditions

Design Conditions:

- Summer 100F DB/ 65 MWB; Winter 37.5F (99.5% Oakland ASHRAE)

Environmental conditions

CRT design guidelines: 60 to 75F DB; 30-60% RH

Environmental conditions – operating modes for air cooling

Operating Mode	Number of Hours Per Year	Percent of Year
Mix of outside and return air	8200 hours	93%
Direct evaporative cooling	45	0.5 %
Direct evaporative cooling and chilled water coil	38	0.4%
Chilled water coil	510	6%

Air economizer and evaporative cooling

- Direct evaporative cooler doubles as humidifier
 - Uses sensible heat from equipment
- Humidity allowed to float within recommended range
- Evaporative cooler has more pressure drop but lower life cycle cost relative to spray nozzles or ultrasonic humidifier

Water side economizer

Air management

Isolation of hot and/or cold aisles on the HPC floor

- minimize mixing and recirculation
- CFD model to predict air pressures for consistent air flow

Divisible space under and above raised floor

 allows for different environmental conditions for different computing systems

Heat recovery

Hot air or water will be available

- Warm enough to preheat air in CRT and nearby laboratory and office buildings
- Enough heat available to eliminate all space heating energy usage in these buildings
- Interconnection also used for heating water to CRT (at start-up)

Power distribution efficiency

480 volts to the racks Minimizes conversion loss

Minimal UPS (under 10% coverage)

 Selection of delta-conversion or doubleconversion with bypass to minimize losses

No need for redundant power supplies

Predicted HPC Performance

DCiE of 0.90-0.95 based on annual energy

DCiE of 0.83-0.90 based on peak power

No credit taken for heat recovery

