

ASHRAE Data Center Environmental Standards Some Field Observations

Mukesh Khattar Tech Executive, EPRI

SVLG Data Center Efficiency Workshop April 15, 2015

Mission

Advancing safe, reliable, affordable and environmentally responsible electricity for society through global collaboration, thought leadership and science and technology innovation.

www.epri.com

Together... Shaping the Future of Electricity

Indoor Temperature

- Depends on type/criticality of data center—production; owned/colo facility; IT labs; Server room
- Indoor temperature varies as air moves through data center
- Indoor environments in most data centers are controlled on Return Air (RA)—and not on Supply Air (SA)—temperature
- It is impractical to control on SA temp with conventional Direct Expansion (DX) air conditioning equipment
- Air inlet temperature to IT equipment is not the same as SA temp
- Air inlet temperature varies with height of IT equipment and where it is located

Relative Humidity (RH), or Absolute Humidity?

- Indoor Relative Humidity (RH) will vary based on where you measure it; it changes with the Dry Bulb temperature
- However, Absolute Humidity—measured by Dew Point (DP) temperature—does not change with ambient temperature
- Humidity was not as tightly controlled, even before ASHRAE expanded its range
- Indoor Dew Point (DP) temperature would reach the same as outdoor DP with some time delay unless moisture is added (humidification) or removed (dehumidification)
- Dehumidification is automatically accompanied with cooling in most applications

Some Field Observations-Random Sample

- These are RA conditions
- Cooling and humidifying simultaneously! It must be winter.

Cooling, Heating, Dehumidifying, Humidifying Simultaneously

It can happen when you have multiple units that are independently controlled!

Some Extreme Conditions

It can happen when estimated IT load does not materialize

Newer DX Units With Variable Cooling Capacity

Newer DX Units With Variable Cooling Capacity

Newer units screens and one off measurements

Supplement data with hand held measurements

Rack Inlet Air Temperature Profile

- Thermal plot for a rack under no containment and overhead air delivery
- Temperature variation of ~5-10 F from bottom to top of the rack
- Average temperature rise across IT equipment is ~15-18 F

Cool weather needs humidification

Houston Climate

 Winter humidification and summer dehumidification needed for a few hours only

New York City

TTTT

 Winter humidification needed for a few hours only

Together...Shaping the Future of Electricity

